
Enabling Complex Asian Scripts on Mobile Devices
Waqar Ahmad

Computer Science Department,

National University of Computer and Emerging Sciences,

Lahore, Pakistan

waqar.ahmad@nu.edu.pk

Sarmad Hussain

Center for Language Engineering,

Al-Khawarzimi Institute of Computer Science, University

of Engineering and Technology, Lahore, Pakistan

sarmad@cantab.net

Abstract—The increasing penetration of mobile devices has resulted

in their use in diverse domains such as education, health,

entertainment, business, sports, and social networks. However, lack

of appropriate support for many local languages on mobile devices,

which use complex scripts rather than Latin scripts, is constraining

many people across developing Asia and elsewhere from using their

mobile devices in the same way. There are some ad hoc solutions for

certain scripts, but what is needed is a comprehensive and scalable

framework which would support all scripts. The Open Type Font

(OTF) framework is now being widely used for supporting complex

writing systems on computing platforms. If support for OTF is also

enabled on mobile devices, it would allow them to also support

complex scripts. The current paper reports on work in this area,

taking Pango, an open source rendering engine, and porting and

testing its language modules on a mobile platform to provide support

for Open Type Fonts. The paper describes the process for successful

deployment of this engine on Nokia devices running the Symbian

operating system for Urdu, Hindi and Khmer languages. The testing

results show that this is a viable solution for enabling complex

scripts on mobile devices, which can have significant socio-economic

impact, especially for developing countries.

Keywords— Mobile Devices, Smart-Phones, Pango, Localisation,

Open Type Fonts, Complex Writing Systems

I. INTRODUCTION

The number of mobile phone subscriptions worldwide is

expected to reach 5 billion in 2010 (ITU 2010). Mobile device

penetration in developing countries of Asia is also increasing

at a rapid pace (MobiThinking 2010). While current and past

usage of mobile devices has mostly been for voice, there is a

significant increase in text and other data services using

smart-phones (adMob 2010). It is expected that more than

85% of mobile handsets will be equipped for mobile web

access by the end of 2011 (MobiThinking 2010), as many

smart-phones today have processing power and other

capabilities comparable to desktop computers of early 1990s.

As the hardware capabilities of mobile devices improve, they

are increasingly being used in areas like education, health,

entertainment, news, sports, and social networks. This usage

of smart-phones requires that text and other data services are

made available in local languages. However, most of the

mobile devices that are currently in use only support Latin

script. There is limited or no support available for many other

language scripts, specifically those of developing Asia. The

devices generally support basic Latin, bitmap and True Type

Fonts (TTF). Most Asian languages scripts, on the other hand,

are very cursive, context sensitive and complex (Hussain 2003;

Wali and Hussain 2006), and can only be realized using more

elaborate font frameworks, e.g. Open Type Fonts (OTF)

(Microsoft 2009). Such frameworks are not supported on most

mobile devices and smart-phones at this time. Many people in

developing Asia are only literate in their own languages and

are, therefore, unable to utilize their mobile devices for

anything other than voice calls. Developing font support is an

essential pre-cursor to making content available in local

language scripts. Once support is in place, content can be

created, allowing people to utilize the additional capabilities

of mobile phones for their socio-economic gains.

Whether focusing on iPhone (Apple Inc. 2010), Symbian

based Nokia Phones (Forum.Nokia Users 2009), Google

Android (Google 2009), Windows Mobile (Microsoft 2010),

or Blackberry, the worldwide web is full of queries and posts

showcasing the needs and concerns of developers and end-

users, who are looking for particular language support on their

devices. While there is extensive localisation support for

desktop computers mobile devices are lagging behind. Smart-

phone software developers try to find workarounds for

resolving localisation issues and sometimes achieve limited

success. However, total success can only be achieved if the

underlying device platform provides comprehensive support.

If the underlying platform has limitations, then they are also

reflected in the workarounds produced by software developers.

A major problem is that mobile platforms provide limited

software internationalisation support and therefore,

localisation for certain languages may become very difficult.

In this paper we have suggested a solution for alleviating

some of the problems associated with the support of complex

Asian scripts on mobile devices using Pango—an open source

library for text layout and rendering with an emphasis on

internationalisation (Taylor 2004). Research and development

has been carried out with a focus on evaluating the viability of

Pango as a text layout and rendering engine on mobile

platforms. For this project, Symbian has been chosen as the

mobile platform. The project has two components: one

component deals with porting script specific modules of

Pango to the Symbian platform; the other component is the

development of an application (referred to as the

SMSLocalized Application hereinafter) that can send/receive

SMS in local languages using Pango with mobiles, as a proof

of concept.

Although all of the language specific modules of Pango are

ported successfully to Symbian platform, extensive testing is

performed for Urdu and an initial level of testing is performed

for Khmer and Hindi. The results of the tests are quite

promising and confirm the viability of Pango as a font engine

for mobile devices. The SMSLocalized application contains

features specialized for local language scripts. This

application has been tested for Urdu; however, the

architecture of the application is very flexible and as such

allows quick application customization for other languages.

This paper presents the relevant background and details of this

work.

II. CURRENT LOCALISATION SUPPORT ON MOBILE

PLATFORMS

Limitations in script support on mobile devices are often due

to constraints specific to mobile handsets such as a small

amount of memory, limited processing power and other

factors. During our research, we have learnt that most of the

issues related to localisation on mobile phones fall in one or

more of following patterns:

• Localisation features supported on a mobile device may

not be adequately documented. As a result of this,

information about localisation features may only

become known after acquiring and evaluating the

device by installing localised software.

• Only a limited set of features for a language may be

supported on the device. For instance, True Type Fonts

(TTF) may be supported but not Open Type Fonts

(OTF), which will results in lack of support of a various

languages and their scripts.

• In mobile device system software, language support

may exist at the level of menu items but may be missing

at application level. For instance, a device may have an

operating system with a properly localised user

interface but an on-device messenger application may

not allow the user to input text in a local language.

• A particular device platform may support many

languages as a whole. However, when a device is

released in the market, it may only be equipped with a

subset of the platform’s supported languages. For

instance, a language-pack may be missing or the font

rendering engine may be constrained by its multilingual

language support.

As previously mentioned, software developers continue trying

to find workarounds for the localisation issues which are, in

many ways, limited by the support provided by the underlying

device platform. The following sections give an overview of

the extent of localisation support on some of the major smart-

phone platforms.

A. Symbian

Symbian OS, currently owned by Nokia, is the most widely

deployed operating system on mobile phones. It supports

application development using Java Micro Edition (Java ME)

and C/C++. Symbian operating system supports a very basic

level of user interface which does not make it usable by

layman users. Therefore, on top of Symbian operating system,

some mobile device vendors have developed rich user

interfaces. Two such user interfaces are S60, developed by

Nokia, and UIQ, developed by UIQ technology. (Morris

2007).

Symbian supports a number of languages. However, it does

not support Open Type Fonts (Forum.Nokia 2009). Its default

engine is based on the FreeType font library (Forum.Nokia

2009). The Symbian operating system, however, can be

extended by plugging in an external font engine to add support

for languages or scripts not already supported (Morris 2007).

For instance, an engine can be developed or adapted from

open source that adds support for open type fonts with

complex scripts i.e. if a third party developer wants open type

font support, s/he can develop and plug the font engine into

the operating system which can then be used by any software

application on the device.

B. Windows Mobile

Windows Mobile is a Windows CE based operating system

developed by Microsoft. Windows CE is primarily designed

for constrained devices like PDAs and can be customized to

match the hardware components of the underlying device

(Microsoft 2010). Windows Mobile supports the

Microsoft .Net Compact Framework for application

development, which in turn supports a subset of

Microsoft .Net Framework features.

According to the Microsoft website (Microsoft 2010),

WordPad, Inbox, Windows Messenger, and File Viewer

applications are not enabled for complex scripts like Arabic,

Thai, and Hindi.

There are some commercial solutions for localisation on the

Windows Mobile platform. One such solution is Language

Extender. It supports Arabic, Czech, English, Estonian, Farsi,

Greek, Hebrew, Hungarian, Latvian, Lithuanian, Polish,

Romanian, Russian, Slovak, and Turkish (ParaGon Software

Group 2010). However, Open Type Fonts for other complex

writing systems, e.g. Urdu Nataleeq (Wali and Hussain 2006)

are not available.

C. Android

Android is a relatively new mobile software stack based on

Linux. It allows application development using the Java

programming language. However, a native SDK is also

available from the Android developer website that can be used

to develop native applications in C/C++ (Google 2010).

Localisation on the Android platform is still limited to a few

languages. Independent developers have tried workarounds

with limited success (Kblog 2009). There is lot of debate on

language support issues on Android forums (Google Android

Community 2010). However, it has still not been made clear,

officially, from Google as to when support for OTF will be

included.

Google (2009) talks about localisation for German, French,

and English but does comment about languages using non-

Latin scripts.

D. Apple iPhone

According to Apple (Apple 2010), the Apple iPhone 3G

supports a number of languages including English (U.S),

English (UK), French (France), German, Traditional Chinese,

Simplified Chinese, Dutch, Turkish, Ukrainian, Arabic, Thai,

Czech, Greek, Hebrew, Indonesian, Malay, Romanian, Slovak,

and Croatian. Again, only TTF based fonts, e.g. for Arabic

script, are supported, and OTF fonts are not supported.

E. Monotype Imaging Rasterization and Layout Engines for

Mobile Phones

Monotype imaging (2010) provides engines for font

rasterization (iType Font Engine) and layout (WorldType

Layout Engine) for smart-phones. The solution is ANSI C

based and is available for integration with Android, Symbian

and Windows CE. However, full Open Type Font support is

not available in their solutions.

F. Other Smart-phone Platforms

Other smart-phone platforms like RIM Blackberry, Palm

WebOS etc. are not investigated in detail from a localisation

perspective in the current work. They support localisation

features, however, their limitations are similar to those

mentioned above, as are discussed on online developer and

end-user forums (ParaGon Software Group 2010).

III. CURRENT WORK

An investigation is conducted to evaluate the possibility of

using Pango as a text rendering and layout engine for smart-

phones. The project covers the following:

1. Porting language specific modules of Pango to the

Symbian operating System.

2. Development of an SMS application (SMSLocalized),

designed so that it can be customized for scripts

supported by Pango.

As Symbian is a dominant and mature mobile platform, it has

been chosen for this project. Pango has a basic module and

multiple scripts specific modules, e.g. for Arabic/Urdu, Indic,

Khmer, Tibetan, etc. There has already been a compilation of

Pango for the Symbian platform (Cairo Graphics 2009),

however, this compilation only covers the basic module, and

script-specific modules have not been ported. We use Cairo

and compile individual script modules on Symbian. Among

the modules ported, Arabic (for Urdu), Indic and Khmer are

tested after deployment. The rest of the paper is focused on

this process of porting and testing the script specific modules

of Pango on the Symbian platform.

A. Symbian Overview

As said earlier, Symbian OS is currently the most widely

deployed operating system on mobile phones. It supports

application development using Java and C/C++. Java

application development on Symbian is enabled using Java

Micro Edition (Java ME) and C/C++ application development

is enabled using native OS application framework. (Morris

2007). To fully exploit native device features, development in

C/C++ is required. Therefore, for this project, which requires

extensive native device features, the development is also

carried out in C/C++. A typical Symbian C/C++ application is

designed according to Model-View-Controller (MVC)

architecture (Harrison and Shackman 2007). SMSLocalized

Application has also been developed according to the same

MVC architecture.

As Pango is a C based library (Martensen 2009), Symbian

support for C/C++ makes it easier to port the library.

Depending upon the type of features accessed by an

application from the device operating system, a Symbian

application may require official signing from Symbian Signed.

For development and testing of our application, we used the

‘developer certificates.’

B. Pango Overview

Pango is a popular text layout and rendering library used

extensively on various desktop platforms. Pango is the core

library used in GTK+-2.x for text and font handling

(Martensen 2009; also Taylor 2004). Pango has a number of

script specific modules, including modules for Arabic,

Hebrew, Hangul, Thai, Khmer, Syriac, Tibetan, and Indic

scripts. Pango can work with multiple font back-ends and

rendering libraries as mentioned below (Martensen 2009).

• Client side fonts using the FreeType and Fontconfig

libraries. Rendering can be done with Cairo or Xft

libraries, or directly to an in-memory buffer with no

additional libraries.

• Native fonts on Microsoft Windows using Uniscribe for

complex-text handling. Rendering can be done via

Cairo or directly using the native Win32 API.

• Native fonts on MacOS X using ATSUI for complex-

text handling. Rendering using Cairo. ATSUI is the

library for rendering Unicode text on Apple Mac OS X.

C. R&D Challenges

Mobile application development poses a lot of challenges

primarily due to the constrained nature of the devices. Limited

memory size, low processing power, dependency on batteries,

constrained input and output modalities, limited system APIs

access, are just some of the many constraints faced by mobile

application developers and researchers.

While the support for high level application development for

mobile devices is extensively available, low-level application

development remains challenging. Even more challenging is

exploring areas which are relatively lesser traversed by

application developers and researchers e.g. localisation and

font rendering. Lack of documentation, few forum discussion

threads, scarcity of expert developers, the unpredictable nature

of development and the limited debugging and testing

platforms, are among some of the major challenges that we

faced during project R&D on localisation for smart-phones.

Even installation of a font file on a mobile device may at

times become a challenge. For example, it is not always easy

to find out where to copy font files, how to get the device to

detect a new font etc. Details such as these may only be

known after extensive exploration of the device platform

under consideration, as it may be documented well for

application developers.

D. Libraries

Integration of Pango with Cairo provides a complete solution

for text handling and graphics rendering. The combination of

Pango and Cairo, along with their dependencies, is compiled

for the Symbian platform as part of this project. The following

libraries are required for complete solution to work properly:

1) Pango

Pango is font rendering and text layout engine available

with an open source license. Pango has a number of

language specific modules, including modules for

Hebrew, Arabic, Hangul, Thai, Khmer, Syriac, Tibetan,

and Indic scripts (Martensen 2009), as discussed.

2) Cairo

Cairo is 2-D graphics library which supports multiple

output devices i.e. X-Window, Win32, PDF, SVG etc.

The library has been written in the C programming

language; however, its bindings are available in other

languages such as Java, C++, PHP etc. (Cairo Graphics

2010).

3) FreeType

FreeType is an ANSI C compliant font rasterization

library. It provides access to font files of various

formats and performs actual font rasterization. Font

rasterization features include the conversion of glyph

outline of characters to bitmaps. It does not provide

APIs to perform features like text layout or graphics

processing (Free Type 2009).

4) FontConfig

FontConfig allows the selection of an appropriate font

given certain font characteristics. It supports font

configuration and font matching features and depends

on the Expat XML parser. FontConfig has two key

modules: The Configuration Module builds an internal

configuration from XML files and the Matching Module

accepts font patterns and returns the nearest matching

font (FontConfig 2009).

5) Glib

GLib provides the core application building blocks for

libraries and applications written in C. It provides the

core object system used in GNOME, the main loop

implementation, and a number of utility functions for

strings and common data structures (Pango 2009).

6) Pixman

Pixman is a low level pixel manipulation library for X

and Cairo. Supported pixel manipulation features

include image compositing and trapezoid (Pixman

2009).

7) Expat

Expat is an XML parsing library written in C. It is a

stream-oriented parser in which an application registers

handlers for components that the Expat parser might

find in the XML document e.g. XML start tags (Expat

2009).

8) libpng

Libpng is a library written in C for the manipulation of

images in PNG (Portable Network Graphics) format

(Roelof 2009).

E. Tools and Technologies

The following tools and technologies are used for the

development of this work.

1) Code Baseline

Code from http://code.google.com/p/cairo-for-symbian/

(Cairo Graphics 2009) is taken as baseline for the current

work. This is an earlier compilation of the basic Pango

module for Symbian platform.

2) Development Tools

The Following tools were used during development:

• Carbide C++ v2.3.0: an IDE provided by Nokia for

application development on the Symbian platform

(Forum.Nokia 2009).

• Symbian S60 3rd Edition Feature Pack 2 SDK v1.1.2: a

development kit for Nokia S60 and Symbian platforms.

It includes a simulator for testing applications on a

Windows desktop before they are installed and tested

on actual devices (Forum.Nokia 2009).

F. Application Architecture

The project has two major parts. The first is an SMS

application for testing font support and porting of the

language modules of Pango and development.

1) SMSLocalized Application

The SMSLocalized application is a Symbian application

designed for the languages supported through Pango. The

application has the following features.

• Allows typing of text using an SMS Text editor.

• Displays an on-screen keypad, which is configurable

based on a text-file for a language.

• Sends and receives text as SMS.

• Automatically wakes up whenever a new message is

received.

The SMSLocalized application is implemented for the Urdu

language, chosen for its complexity in contextual shaping and

positioning of glyphs (Hussain 2003).

Figure 1 depicts SMSLocalized application class diagram

developed in Symbian C/C++. SMSLocalized Application,

SMSLocalizedDocument, SMSLocalizedAppUi, and

NewMessageContainerView are required by the MVC

architecture of Symbian applications.

To enable Urdu text input on mobile phones, a custom key

map has to be defined so that the appropriate Urdu characters

of Urdu are rendered against each key press. Many mobile

phones support multi-tapped text input, where each key on the

keypad represents more than one characters. This arrangement

of character sequences against each numeric key on the

mobile phone is called the keymap i.e. each numeric key on

the device has an associated keymap.

On a typical Symbian device, a keymap is defined against

each key on the device keypad so a character can be entered

using the multi-tapping nature of Numeric keypads.

NumerciLocalizedPtiEngine provides customized low level

input mechanisms. One key feature supported in this class is

that it defines a new keymap for the local language.

NumericKeypad is used to draw a custom localized keypad on

the mobile screen. This involves measuring screen size and

dividing it appropriately to allow sufficient space for a

numeric keypad consisting of four rows and three columns

while still giving enough space to enter text. The

CSMSWatcher class inherits from CActive and registers an

active object with the scheduler. It implements methods to

handle messages received by the application.

Figure 1: Class Diagram of the SMSLocalized Application

To prevent the Symbian operating system from loading the

default keymap and using the customized keymap for another

local language, a new keymap has to be defined and a

mechanism developed to load this sequence of characters

when the application starts up. This involves defining a

custom Unicode sequence against each key on the numeric

keypad in a text file and using the CPtiEngine API of the

Symbian platform to load customized keymap sequences from

the relevant resource file.

2) Script Specific Modules of Pango

The second major component of the solution is the Pangocairo

library core and script-specific modules. The Pangocairo

library, along with script-specific modules, are compiled and

ported to Symbian platform.

Pango supports multiple scripts including Latin, Cyrillic,

Arabic, Hangul, Hebrew, Indic and Thai. Figure 2 provides an

overview of the high level architecture of Pango (Taylor

2001). The following are key features of the Pango

Architecture (Taylor 2001):

• Unicode has been used as common character encoding

mechanism throughout the Pango system.

• There is a core functionality module, Pango Core,

which includes functions such as itemization

(subdivision of text strings) and line breaking.

• There are script specific modules for handling features

unique to each script. Each script module has been

further split into two modules: the language module

and the shaper module. The language module is

independent of rendering system and the shaper

module (e.g. Arabic X Shaper, PS X Shaper) is

dependent on the rendering system.

• Pango rendering components support multiple

rendering back ends. There are separate components

for each rendering backend e.g. X rendering backend is

responsible for rendering X fonts using XLib and

XServer.

Figure 2: Pango Architecture (Taylor 2001)

Pangocairo itself includes packages of standard C/C++

libraries. Therefore, it can be ported to the Symbian platform,

which also supports C/C++. However, this task is challenging

because the availability of the technical information required

is limited. The following are some important modifications

carried out in Pango and its dependent libraries in order to

port it onto the Symbian operating system.

• Declarations of language specific modules are included

in the code, which lead to the generation of interface

functions. These interface functions enable access to

the language specific modules in the code.

• The source code that needs to be compiled for the

Symbian operating system must be referred to in

appropriate ‘project make files’ i.e. .mmp files.

References to interface components of script specific

modules (e.g. Arabic) are included in

appropriate .mmp files.

• On start-up, the Symbian operating system loads font

files from specific folders. Since the FontConfig

library accesses font files, it is updated so that it can

access Nafees Nastalique font files loaded by the

Symbian operating system.

• Some of required Pango API functions are not exposed

for external access in the Symbian code. Such

functions are declared and listed in appropriate

interface files.

In addition to the above, a component that interfaces with

the Pango library has been created. This component enables

access to text rendering features of Pango i.e., it can take

any Unicode text as input and return the rendered text in a

format compatible with requirements of the Symbian

operating system.

3) Deployment and Testing Platforms

Both components of the solution were deployed and tested on

the following platforms.

• WINSCW

This is a simulator for theS60 Symbian platform

included in Symbian S60 3rd Edition Feature Pack 2

SDK v1.1.2 for Windows Platform.

• Nokia E51 (A Symbian Phone)

The following are the specifications of the Nokia E51

handset—a Symbian based phone:

i. Symbian: v9.2 S60 v3.1 UI

ii. CPU: ARM 11 369 MHz Processor

iii. RAM: 96 MB

G. Testing Results

The SMSLocalized application and language specific modules

of Pangocairo framework are deployed and tested on both a

Windows emulator (Symbian S60 3rd Edition) and a real

device (Nokia E51). The application works successfully on

both platforms. Figure 3 shows the SMSLocalized application

running on the Nokia S60 3
rd

 Edition Emulator. The on-

Screen Urdu Keypad in Nafees Nastalique Open Type Font

can also be seen. Figure 4 shows Urdu text written in Nafees

Nastalique font (an Open Type Font) as rendered on the Nokia

E51.

An Open Type Font file contains glyphs and rules. The glyph

tables are in a similar format to those used to store vectorized

outlines for TTF files. In addition, rules for glyph positioning

and their contextual substitution are represented in different

tables. Finally, marks which are associated with glyphs can

also be adjusted through rules for finer tuning of fonts. All of

these aspects are thoroughly tested for Nafees Nastalique, and

the open Urdu font freely available online. More than 500

Urdu ligatures 1 consisting of two to eight characters are

chosen from the list of valid ligatures available online

(CRULP 2009). The arbitrary selection includes complex

ligatures, which exhibit cursiveness, context sensitive shaping

and positioning of glyphs. Table 1 shows the ligature counts

for two to eight character combinations selected for this

testing.

Figure 3: the SMSLocalized Application on Nokia S60 3
rd

Edition Emulator.

Table 1: Summary of Ligature Set Selected for Testing

1 Ligature is the portion of the written representation of a

word that is formed by characters combining together. A

word may have one or more ligatures and a ligature may be

formed by one or more characters. A non-joining character or

a word-ending will end a ligature.

Character Count

per Ligature

Number of

Ligatures Tested

2 90

3 107

4 95

5 81

6 98

7 65

8 20

The ligature set included all available Urdu characters.

Table 2 shows the frequency of each letter in the test set and

the contexts (initial, medial, final and isolated) in which it has

been tested. In addition, the mark association and placement

is tested. Though the current tests do not test every possible

shape of each Urdu letter, as there is glyph variation based on

other characters in the context and not just the four contexts

listed, the testing is still representative and these results can be

extrapolated to un-tested substitution and positioning rules

with confidence. The shaded cells in the table are for non-

joining characters, which do not occur in initial or medial

positions. The ligatures were displayed and manually tested

on the Symbian S60 Emulator (WINSCW) and the Nokia

E51device.

Figure 4: Pango Urdu (Open Type Font Nafees Nastalique)

text rendering on a Nokia E51

Table 2: Context and Distribution of Urdu Characters in the

Test Set of 500 Ligatures

Character Frequency Context
 Initial Medial Final Isolated

 20 97 131 ا

 12 2 36 65 115 ب

 7 4 63 39 113 پ

 11 18 135 13 177 ت

 9 4 71 18 102 ٹ

 3 3 3 2 11 ث

 2 1 17 33 53 ج

 3 3 33 30 69 چ

 1 5 9 11 26 ح

 2 2 4 5 13 خ

 7 11 18 د

 4 10 14 ڈ

 1 6 7 ذ

 5 13 18 ر

 2 2 4 ڑ

 4 3 7 ز

 1 3 4 ژ

 5 3 58 24 90 س

 4 7 8 16 35 ش

 2 1 7 4 14 ص

 2 2 2 3 9 ض

 2 2 9 6 19 ط

 1 2 5 3 11 ظ

 3 2 12 5 22 ع

 1 2 4 5 12 غ

 3 1 13 9 26 ف

 3 1 6 4 14 ق

 11 2 61 24 98 ک

 5 3 30 23 61 گ

 6 5 101 26 138 ل

 9 5 35 31 80 م

 21 19 172 42 254 ن

 3 6 9 ں

 8 13 21 و

 19 26 17 7 69 ہ

 5 168 3 176 ھ

 5 5 ء

 13 61 228 6 308 ی

 12 119 131 ے

Figures 4 and 5 show the rendering results of some of the

selected ligatures on the phone and emulator respectively,

showing the cursiveness, glyph substitution, glyph positioning

and mark placement complexities.

Figure 5: Pango Urdu (Open Type Font Nafees Nastalique)

text rendering on Nokia S60 Emulator

After display, all the ligatures were manually inspected for

correct shaping, substitution and mark placement. Where

there are potential ambiguities, the same are compared with

the rendering on the computer to see whether it is the source

rendering or the font rules. Detailed testing shows that there

are no errors which can be attributed to the porting of these

script-specific modules of Pango, verifying completely

accurate porting for the module for Arabic script as used for

the Urdu language.

The Khmer and Indic modules have also been compiled and

tested using limited text. Though no errors have been found,

more extensive testing is required for complete verification, so

these testing details are not reported at this time. Figure 6

shows Urdu, Devanagari (using the Indic module), and Khmer

rendered on Symbian S60 3
rd

 edition emulator.

Figure 6: Urdu, Devanagari, and Khmer rendered on

Symbian S60 3
rd

 edition emulator.

IV. CONCLUSION

The global penetration of smart-phones is making local

language support for them both urgent and significant, as an

increasing number of mobile users want the devices to access

local language content. However, we have learnt that smart-

phones are still far from current desktops in their support for

the local language scripts of developing Asia. The Symbian

platform, among the oldest and mature mobile platforms, does

not provide complete Open Type Font (OTF) support.

However, the porting of Pango script-specific modules can

add OTF support to Symbian. This has been successfully

achieved through our project. All of the Pango language script

modules have been ported to the Symbian OS, with extensive

testing carried out for Urdu and initial testing performed for

Khmer. Through the process, we have learnt that the Urdu,

Indic and Khmer language modules of Pango work well on the

Symbian platform. We believe that given the extensive

support for international languages by Pango, it is a good
choice for serving as a text layout and rendering engine for

smart-phone devices.

Currently, the project is continuing to port and test additional

script modules. The SMSLocalized application is being

integrated to communicate with Pango for rendering and

additional work is underway to develop similar support for the

Android open source platform.

ACKNOWLEDGEMENTS

This work has been supported by the PAN Localization

project (www.PANL10n.net) grant by IDRC Canada

(www.idrc.ca), administered through Center for Language

Engineering (www.CLE.org.pk), Al-Khawarizmi Institute of

Computer Science, University of Engineering and Technology,

Lahore, Pakistan.

REFERENCES

adMob (2010) AdMob Mobile Metrics [online], available:

http://metrics.admob.com/ [accessed 15 Aug 2010]

Android Developers on Google Groups (2010) Localization [online],

available: http://groups.google.com/group/android-

platform/browse_thread/thread/8887a2fe29c38e7 [accessed 17 Aug
2010].

Apple (2010) iPhone 4 Technical Specifications [online], available:

http://www.apple.com/iphone/specs.html [accessed 20 Aug 2010].

Cairo Graphics (2010) Cairo Tutorial [online], available:

http://cairographics.org/tutorial/ [accessed 12 May 2009].

Cairo Graphics (2009) Cairo for Symbian OS [online], available:

http://code.google.com/p/cairo-for-symbian/ [accessed 18 May 2009].

CRULP (2009) Valid Ligatures for Urdu [online], available:

http://www.crulp.org/software/ling_resources/UrduLigatures.htmhttp://

www.forum.nokia.com/ [accessed 11 Mar 2010].

Edwards, L. and Barker, R. (2004) Developing S60 Applications: A

Guide for Symbian OS C++ Developers, U.S.: Addison Wesley.

Expat (2009) The Expat XML Parser [online], available:

http://expat.sourceforge.net/ [accessed 13 May 2009].

Free Type (2009) The FreeType Project [online], available:
http://www.freetype.org/index2.html [accessed 12 May 2009].

FontConfig (2009) User’s Manual [online], available:

http://fontconfig.org/fontconfig-user.html [accessed 13 May 2009].

Forum.Nokia (2009) Support for Open Type Fonts [online], available:

http://discussion.forum.nokia.com/forum/showthread.php?163031-

Support-for-Open-Type-Fonts [accessed 16 Aug 2010].

Forum.Nokia Users (2009), Discussion Board [online], available:

http://discussion.forum.nokia.com/forum/ [accessed 7 Oct 2009].

Google (2009) Localizing Android Apps [DRAFT] [online], available:

http://groups.google.com/group/android-developers/web/localizing-

android-apps-draft [accessed 14 May 2010].

Google (2010) Android 2.2 Platform [online], available:
http://developer.android.com/sdk/android-2.2.html [accessed 10 Oct

2010].

Google Android Community (2010) Arabic Language Support [online],
available:

http://code.google.com/p/android/issues/detail?id=5597&colspec=id%

20type%20status%20owner%20summary%20stars [accessed 19 Aug
2010].

Harrison, R. and Shackman, M. (2007) Symbian OS C++ for Mobile

Phones: Application Development for Symbian OS v9, England: John

Wiley & Sons, Ltd.

Hussain, S.(2003). ‘www.LICT4D.asia/Fonts/Nafees_Nastalique.’

Proceedings of 12th AMIC Annual Conference on E-Worlds:

Governments, Business and Civil Society, Asian Media Information

Center, Singapore.

International Telecommunication Union (2010) ITU sees 5 billion
mobile subscriptions globally in 2010 [online], available:

http://www.itu.int/newsroom/press_releases/2010/06.html [accessed 18

Aug 2010].

Kblog (2009) Arabic Language in Android [online] available:

http://blog.amr-gawish.com/39/arabic-language-in-android/ [accessed
19 Aug 2010]

Microsoft (2009) OpenType Specification [online], available:

http://www.microsoft.com/typography/otspec/ [accessed 10 Oct 2010].

Microsoft (2010) Creating a Complex Scripts-enabled Run-Time

Image [online], available: http://msdn.microsoft.com/en-

us/library/ee491707.aspx [accessed 16 Aug 2010].

MobiThinking (2010) Global mobile stats: all latest quality research on

mobile Web and marketing [online], available:

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats

[accessed 16 Aug 2010].

Monotype Imaging (2010) Products and Services [online], available:

http://www.monotypeimaging.com/productsservices/ [accessed 5 Aug

2010].

Morris, B. (2007) The Symbian OS Architecture Sourcebook: Design

and Evolution of a Mobile Phone OS, England: John Wiley & Sons,
Ltd.

Pango (2009) Pango Reference Library [online] available:

http://library.gnome.org/devel/pango/stable/ [accessed 15 May 2009].

ParaGon Software Group (2010) Language Extender for Windows

Mobile Pocket PC [online], available: http://pocket-pc.penreader.com/

[accessed 16 Aug 2010].

ParaGon Software Group (2010) PILOC for Palm [online] available:

http://palm.penreader.com/ [accessed 24 Aug 2010].

Pixman (2009) Pixmann [online], available:

http://cgit.freedesktop.org/pixman [accessed 13 May 2009].

Roelof, G. (2009) LibPng for Windows [online], available:

http://gnuwin32.sourceforge.net/packages/libpng.htm [accessed 15

May 2009].

Roelof, G. (2009) LibPng [online], available:

http://www.libpng.org/pub/png/libpng.html [accessed 15 May 2009].

Sales, J. (2005) Symbian OS Internals: Real-time Kernel Programming,

England: John Wiley & Sons, Ltd.

Taylor, O. (2004) ‘Pango, an open-source Unicode text layout engine,’
25th Internationalization and Unicode Confernece, Unicode Consortium,

Washington DC.

Taylor, O. (2001) Pango: Internationalized Text Handling [online],

available: http://fishsoup.net/bib/PangoOls2001.pdf [accessed 10 Jun

2009].

Wali, A., Hussain, S. (2006) ‘Context Sensitive Shape-Substitution in

Nastaliq Writing system: Analysis and Formulation,’ Proceedings of

International Joint Conferences on Computer, Information, and

Systems Sciences, and Engineering (CISSE2006).

